Product Market Competition and the Financing of New Ventures

Jean-Etienne de Bettignies and Anne Duchêne

December 2008
Why Some Entrepreneurs Prefer Debt-Financing

"My error, sir. On the phone I thought you said 'venture' capitalist."
Financing Choices Over the Lifecycle of the Firm

- Financing of startups seem to evolve over the lifecycle of the firm
Financing Choices Over the Lifecycle of the Firm

- Financing of startups seem to evolve over the lifecycle of the firm
 - Early on: equity investments by venture capitalists and angel investors
Financing Choices Over the Lifecycle of the Firm

- Financing of startups seem to evolve over the lifecycle of the firm
 - Early on: equity investments by venture capitalists and angel investors
 - Later on: gradual move towards debt-type financing
Financing Choices Over the Lifecycle of the Firm

- Financing of startups seem to evolve over the lifecycle of the firm
 - Early on: equity investments by venture capitalists and angel investors
 - Later on: gradual move towards debt-type financing
- Possible explanation: not enough collateral early on to obtain debt
Financing Choices Over the Lifecycle of the Firm

- Financing of startups seem to evolve over the lifecycle of the firm
 - Early on: equity investments by venture capitalists and angel investors
 - Later on: gradual move towards debt-type financing
- Possible explanation: not enough collateral early on to obtain debt
- Our suggestion: perhaps change in choice of financing is related to change in product market competition?
Is There Evidence of a Link Between Competition and Financing Choice?

- In the trade literature:
 - Baggs and Brander (2006): Import tariffs increase leverage
 - In the finance literature:
 - Titman and Wessels (1988): Product uniqueness reduces leverage
 - Kovenock and Phillips (1995): Leverage higher in concentrated industries
Is There Evidence of a Link Between Competition and Financing Choice?

- In the trade literature:
 - Baggs and Brander (2006): Import tariff reductions increase leverage
Is There Evidence of a Link Between Competition and Financing Choice?

- In the trade literature:
 - Baggs and Brander (2006): Import tariff reductions increase leverage

- In the finance literature:
Is There Evidence of a Link Between Competition and Financing Choice?

- In the trade literature:
 - Baggs and Brander (2006): Import tariff reductions increase leverage

- In the finance literature:
 - Titman and Wessels (1988): Product “uniqueness” reduces leverage
Is There Evidence of a Link Between Competition and Financing Choice?

- In the trade literature:
 - Baggs and Brander (2006): Import tariff reductions increase leverage

- In the finance literature:
 - Titman and Wessels (1988): Product “uniqueness” reduces leverage
 - Kovenock and Phillips (1995): Leverage higher in concentrated industries
Research Question

- How does product market competition affect entrepreneurs’ choice between VC financing and bank financing?
Related Literature

- **Debt and Competitive Behavior**
 - Debt as optimal contract, predation: Bolton and Scharfstein (1990)

- **Bank Financing Vs. VC Financing**
 - Entrepreneur/investor input complementarity: Bettignies (2008)
Two Primary Contributions

- Contribution #1: To place specific model of VC/bank financing choice in a duopoly model where competitive interaction is explicitly taken into account \(\rightarrow \) Link between the two literatures
Two Primary Contributions

• Contribution #1: To place specific model of VC/bank financing choice in a duopoly model where competitive interaction is explicitly taken into account –> Link between the two literatures

• Contribution #2: To examine not only the impact of VC/bank financing choice on competitive behavior, but also the impact of competition on the financing choice itself.
Model Summary - Assumptions

- Two entrepreneur/financier pairs compete in two period game on Hotelling line, first in price, then in effort-then-price
- Contracts are incomplete
- Under bank financing: debt-type contract
 - Following date 1 success \rightarrow debt is paid back \rightarrow entrepr. keeps control and exerts effort q^h
 - Following failure \rightarrow default \rightarrow entrepr. loses control and zero effort exerted
- Under VC financing: equity-type contract
 - Joint control regardless of date 1 success/failure \rightarrow entrepr. exerts effort q^l
Model Summary - Results

- Payoff from bank financing:

\[
\pi_i \left(0, q^l, t \right) + X_{ibv} \left[P_{ibv} + \pi_i \left(q^h, q^l, t \right) - c \right] - \pi_i \left(0, q^l, t \right)
\]

Competition reduces cost of bank financing and increases benefit - more bank financing at individual firm level and industry level.
Model Summary - Results

- Payoff from bank financing:

\[
\pi_i \left(0, q^l, t\right) + X_{ibv} \left[P_{ibv} + \left(\pi_i \left(q^h, q^l, t\right) - c\right) - \pi_i \left(0, q^l, t\right)\right]
\]

- Payoff from VC financing:

\[
\pi_i \left(q^l, q^l, t\right) + X_{ivv} P_{ivv}
\]
Model Summary - Results

- Payoff from bank financing:

\[\pi_i \left(0, q^l, t \right) + X_{ibv} \left[P_{ibv} + \left(\pi_i \left(q^h, q^l, t \right) - c \right) - \pi_i \left(0, q^l, t \right) \right] \]

- Payoff from VC financing:

\[\pi_i \left(q^l, q^l, t \right) + X_{ivv} P_{ivv} \]

- Choose bank financing over VC financing iff:

\[[B_{ibv} \left(s_{ibv} \left(t \right) - s_{jvb} \left(t \right), t \right) - B_{ivv} \left(t \right)] - [M_{ivv} \left(t \right) - M_{ibv} \left(t \right)] \geq 0 \]
Model Summary - Results

- Payoff from bank financing:

\[
\pi_i \left(0, q^l, t\right) + X_{ibv} \left[P_{ibv} + \left(\pi_i \left(q^h, q^l, t\right) - c \right) - \pi_i \left(0, q^l, t\right) \right]
\]

- Payoff from VC financing:

\[
\pi_i \left(q^l, q^l, t\right) + X_{ivv} P_{ivv}
\]

- Choose bank financing over VC financing iff:

\[
[B_{ibv} \left(s_{ibv} (t) - s_{jvb} (t), t\right) - B_{ivv} (t)] - [M_{ivv} (t) - M_{ibv} (t)] \geq 0
\]

- Competition reduces cost of bank financing and increase benefit \(\rightarrow\) more bank financing at individual firm level and industry level
Basic Model Setup
Key Assumptions

- Two pairs of risk-neutral players: entrepreneur e_i and financier f_i, $i = 1, 2$
Key Assumptions

- Two pairs of risk-neutral players: entrepreneur e_i and financier f_i, $i = 1, 2$
- Wealth constrained e_i is soliciting K_i from f_i to start venture
Key Assumptions

- Two pairs of risk-neutral players: entrepreneur e_i and financier f_i, $i = 1, 2$
- Wealth constrained e_i is soliciting K_i from f_i to start venture
 - f_i can be a banker or a venture capitalist
Key Assumptions

- Two pairs of risk-neutral players: entrepreneur e_i and financier f_i, $i = 1, 2$
- Wealth constrained e_i is soliciting K_i from f_i to start venture
 - f_i can be a banker or a venture capitalist
- Ventures i and j last for 2 periods. Entrepreneurs compete in price in 1st period and in cost-then-price in the second period
Key Assumptions

- Two pairs of risk-neutral players: entrepreneur e_i and financier f_i, $i = 1, 2$
- Wealth constrained e_i is soliciting K_i from f_i to start venture
 - f_i can be a banker or a venture capitalist
- Ventures i and j last for 2 periods. Entrepreneurs compete in price in 1st period and in cost-then-price in the second period
- Ventures are located at each end of Hotelling line with transport cost t. Unique consumer chooses one venture to choose from at the end of each period
Key Assumptions

- Two pairs of risk-neutral players: entrepreneur e_i and financier f_i, $i = 1, 2$
- Wealth constrained e_i is soliciting K_i from f_i to start venture
 - f_i can be a banker or a venture capitalist
- Ventures i and j last for 2 periods. Entrepreneurs compete in price in 1st period and in cost-then-price in the second period
- Ventures are located at each end of Hotelling line with transport cost t. Unique consumer chooses one venture to choose from at the end of each period
- Profits are observable but not verifiable
Timing of the Game

- At date 0:
Timing of the Game

- At date 0:
 - e_i chooses type of financing and makes contractual offer to f_i
Timing of the Game

- At date 0:
 - e_i chooses type of financing and makes contractual offer to f_i
 - VC financing: joint control $(\lambda, 1 - \lambda)$
Timing of the Game

- At date 0:
 - \(e_i\) chooses type of financing and makes contractual offer to \(f_i\)
 - VC financing: joint control \((\lambda, 1 - \lambda)\)
 - Bank financing: financier control if \(e_i\) defaults at date 1; entrepreneur control otherwise.
Timing of the Game

At date 0:

- e_i chooses type of financing and makes contractual offer to f_i
 - VC financing: joint control $(\lambda, 1 - \lambda)$
 - Bank financing: financier control if e_i defaults at date 1; entrepreneur control otherwise.
- e_i chooses first period price P_i
Timing of the Game

- At date 0:
 - e_i chooses type of financing and makes contractual offer to f_i
 - VC financing: joint control $(\lambda, 1 - \lambda)$
 - Bank financing: financier control if e_i defaults at date 1; entrepreneur control otherwise.
 - e_i chooses first period price P_i
- At date 1:
Timing of the Game

- At date 0:
 - e_i chooses type of financing and makes contractual offer to f_i
 - VC financing: joint control $(\lambda, 1 - \lambda)$
 - Bank financing: financier control if e_i defaults at date 1; entrepreneur control otherwise.
 - e_i chooses first period price P_i

- At date 1:
 - Consumer buys from firm i with probability X_i. Profit P_i or 0
Timing of the Game

- At date 0:
 - e_i chooses type of financing and makes contractual offer to f_i
 - VC financing: joint control $(\lambda, 1 - \lambda)$
 - Bank financing: financier control if e_i defaults at date 1; entrepreneur control otherwise.
 - e_i chooses first period price P_i

- At date 1:
 - Consumer buys from firm i with probability X_i. Profit P_i or 0

- At beginning of 2nd period:
Timing of the Game

• At date 0:
 • e_i chooses type of financing and makes contractual offer to f_i
 • VC financing: joint control $(\lambda, 1 - \lambda)$
 • Bank financing: financier control if e_i defaults at date 1; entrepreneur control otherwise.
 • e_i chooses first period price P_i

• At date 1:
 • Consumer buys from firm i with probability X_i. Profit P_i or 0

• At beginning of 2nd period:
 • e_i chooses whether to participate, and if so whether to exert high effort q^h at personal cost c, or low effort $q^l < q^h/2$ at zero cost.
Timing of the Game

• At date 0:
 • e_i chooses type of financing and makes contractual offer to f_i
 • VC financing: joint control $\left(\lambda, 1 - \lambda \right)$
 • Bank financing: financier control if e_i defaults at date 1; entrepreneur control otherwise.
 • e_i chooses first period price P_i

• At date 1:
 • Consumer buys from firm i with probability X_i. Profit P_i or 0

• At beginning of 2nd period:
 • e_i chooses whether to participate, and if so whether to exert high effort q^h at personal cost c, or low effort $q^l < q^h / 2$ at zero cost.
 • e_i chooses $p_i \in \arg \max x_i \left(p_i, p_j, q_i, q_j, t \right) p_i$
Timing of the Game

- At date 0:
 - e_i chooses type of financing and makes contractual offer to f_i
 - VC financing: joint control ($\lambda, 1 - \lambda$)
 - Bank financing: financier control if e_i defaults at date 1; entrepreneur control otherwise.
 - e_i chooses first period price P_i

- At date 1:
 - Consumer buys from firm i with probability X_i. Profit P_i or 0

- At beginning of 2nd period:
 - e_i chooses whether to participate, and if so whether to exert high effort q^h at personal cost c, or low effort $q^l < q^h / 2$ at zero cost.
 - e_i chooses $p_i \in \text{arg max} \ x_i \left(p_i, p_j, q_i, q_j, t \right) p_i$

- At date 2:
Timing of the Game

- At date 0:
 - e_i chooses type of financing and makes contractual offer to f_i
 - VC financing: joint control ($\lambda, 1 - \lambda$)
 - Bank financing: financier control if e_i defaults at date 1; entrepreneur control otherwise.
 - e_i chooses first period price P_i

- At date 1:
 - Consumer buys from firm i with probability X_i. Profit P_i or 0

- At beginning of 2nd period:
 - e_i chooses whether to participate, and if so whether to exert high effort q^h at personal cost c, or low effort $q^l < q^h / 2$ at zero cost.
 - e_i chooses $p_i \in \arg \max \ x_i\left(p_i, p_j, q_i, q_j, t\right)\ p_i$

- At date 2:
 - Consumer buys from firm i with probability x_i. Profit $p_i - a + q_i$ or 0
Incomplete Contracts and Property Rights in Period 2

- Note second period expected profits:

\[
\pi_i (q_i, q_j, t) = \left[\frac{1}{2} + \frac{(q_i - q_j)}{6t} \right] \left[t + \frac{(q_i - q_j)}{3} \right]
\]
Incomplete Contracts and Property Rights in Period 2

- Note second period expected profits:

\[\pi_i(q_i, q_j, t) = \left[\frac{1}{2} + \frac{(q_i - q_j)}{6t} \right] \left[t + \frac{(q_i - q_j)}{3} \right] \]

- Three property rights allocations:
Incomplete Contracts and Property Rights in Period 2

- Note second period expected profits:

\[\pi_i(q_i, q_j, t) = \left[\frac{1}{2} + \frac{(q_i - q_j)}{6t} \right] \left[t + \frac{(q_i - q_j)}{3} \right] \]

- Three property rights allocations:
 - Entrepreneur control (E): \(e_i \) extracts all realized profits ex post
Incomplete Contracts and Property Rights in Period 2

- Note second period expected profits:

\[
\pi_i (q_i, q_j, t) = \left[\frac{1}{2} + \frac{(q_i - q_j)}{6t} \right] \left[t + \frac{(q_i - q_j)}{3} \right]
\]

- Three property rights allocations:
 - Entrepreneur control (E): \(e_i \) extracts all realized profits ex post
 - Financier control (F): \(f_i \) extracts everything
Incomplete Contracts and Property Rights in Period 2

- Note second period expected profits:

\[\pi_i(q_i, q_j, t) = \left[\frac{1}{2} + \frac{(q_i - q_j)}{6t} \right] \left[t + \frac{(q_i - q_j)}{3} \right] \]

- Three property rights allocations:
 - Entrepreneur control (E): \(e_i \) extracts all realized profits ex post
 - Financier control (F): \(f_i \) extracts everything
 - Joint control (J): \(e_i \) obtains fraction \(\lambda \) of realized profits, \(f_i \) obtains \(1 - \lambda \)
Incomplete Contracts and Property Rights in Period 2

- Note second period expected profits:
 \[\pi_i(q_i, q_j, t) = \left[\frac{1}{2} + \frac{(q_i - q_j)}{6t} \right] \left[t + \frac{(q_i - q_j)}{3} \right] \]

- Three property rights allocations:
 - Entrepreneur control (E): \(e_i \) extracts all realized profits ex post
 - Financier control (F): \(f_i \) extracts everything
 - Joint control (J): \(e_i \) obtains fraction \(\lambda \) of realized profits, \(f_i \) obtains \(1 - \lambda \)

- We focus on parameter values such that \(e_i \) exerts \(q^h \) under E, \(q^l \) under J and no participation under F
Property Rights and Second Period Expected Profits

<table>
<thead>
<tr>
<th>$e_j \setminus e_i$</th>
<th>E Control</th>
<th>J Control</th>
<th>F control</th>
</tr>
</thead>
<tbody>
<tr>
<td>E Control</td>
<td>$\pi_i \left(q^h, q^h, t\right)$</td>
<td>$\pi_i \left(q^l, q^h, t\right)$</td>
<td>$\pi_i \left(0, q^h, t\right)$</td>
</tr>
<tr>
<td></td>
<td>$\pi_j \left(q^h, q^h, t\right)$</td>
<td>$\pi_j \left(q^h, q^l, t\right)$</td>
<td>$\pi_j \left(q^h, 0, t\right)$</td>
</tr>
<tr>
<td>J Control</td>
<td>$\pi_i \left(q^l, q^l, t\right)$</td>
<td>$\pi_i \left(0, q^l, t\right)$</td>
<td>$\pi_i \left(0, q^l, t\right)$</td>
</tr>
<tr>
<td></td>
<td>$\pi_j \left(q^l, q^l, t\right)$</td>
<td>$\pi_j \left(q^l, 0, t\right)$</td>
<td>$\pi_j \left(q^l, 0, t\right)$</td>
</tr>
<tr>
<td>F Control</td>
<td></td>
<td></td>
<td>$\pi_i \left(0, 0, t\right)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$\pi_j \left(0, 0, t\right)$</td>
</tr>
</tbody>
</table>
Incomplete Contracts and Property Rights in Period 1

- Entrepreneurs can costlessly divert entire realized profit
Incomplete Contracts and Property Rights in Period 1

- Entrepreneurs can costlessly divert entire realized profit
- Possible explanation: Human capital versus physical capital
Incomplete Contracts and Property Rights in Period 1

- Entrepreneurs can costlessly divert entire realized profit
- Possible explanation: Human capital versus physical capital
- By default e_i owns the venture in period 1
Bank Financing Versus Venture Capital

- Under bank financing
Bank Financing Versus Venture Capital

- Under bank financing
 - Joint control is not available, only entrepreneur control and financier control

- Under VC financing
 - VC gains critical information about venture idea.
 - Even under entrepreneur control, cannot commit not to extract fraction of payoff. E.g. If VC can steal idea with probability \(\lambda \), same split as under joint control.

- Equity-type contract: joint control regardless of state of the world

In both cases, entrepreneur extracts all ex ante rents from financier.
Bank Financing Versus Venture Capital

- **Under bank financing**
 - Joint control is not available, only entrepreneur control and financier control
 - Debt-type contract: If e_i makes debt repayment D_i at date 1, entrepreneur control; otherwise investor control
Bank Financing Versus Venture Capital

• Under bank financing
 • Joint control is not available, only entrepreneur control and financier control
 • Debt-type contract: If e_i makes debt repayment D_i at date 1, entrepreneur control; otherwise investor control
 • In equilibrium, payment is made in good state and default occurs in bad state
Bank Financing Versus Venture Capital

• Under bank financing
 • Joint control is not available, only entrepreneur control and financier control
 • Debt-type contract: If \(e_i \) makes debt repayment \(D_i \) at date 1, entrepreneur control; otherwise investor control
 • In equilibrium, payment is made in good state and default occurs in bad state

• Under VC financing
Bank Financing Versus Venture Capital

- Under bank financing
 - Joint control is not available, only entrepreneur control and financier control
 - Debt-type contract: If e_i makes debt repayment D_i at date 1, entrepreneur control; otherwise investor control
 - In equilibrium, payment is made in good state and default occurs in bad state

- Under VC financing
 - VC gains critical information about venture idea.
Bank Financing Versus Venture Capital

• Under bank financing
 • Joint control is not available, only entrepreneur control and financier control
 • Debt-type contract: If e_i makes debt repayment D_i at date 1, entrepreneur control; otherwise investor control
 • In equilibrium, payment is made in good state and default occurs in bad state

• Under VC financing
 • VC gains critical information about venture idea.
 • Even under entrepreneur control, cannot commit not to extract fraction of payoff. E.g. If VC can steal idea with probability $1 - \lambda \rightarrow$ same split as under joint control
Bank Financing Versus Venture Capital

- **Under bank financing**
 - Joint control is not available, only entrepreneur control and financier control
 - Debt-type contract: If e_i makes debt repayment D_i at date 1, entrepreneur control; otherwise investor control
 - In equilibrium, payment is made in good state and default occurs in bad state

- **Under VC financing**
 - VC gains critical information about venture idea.
 - Even under entrepreneur control, cannot commit not to extract fraction of payoff. E.g. If VC can steal idea with probability $1 - \lambda \rightarrow$ same split as under joint control
 - Equity-type contract: joint control regardless of state of the world
Bank Financing Versus Venture Capital

- Under bank financing
 - Joint control is not available, only entrepreneur control and financier control
 - Debt-type contract: If e_i makes debt repayment D_i at date 1, entrepreneur control; otherwise investor control
 - In equilibrium, payment is made in good state and default occurs in bad state

- Under VC financing
 - VC gains critical information about venture idea.
 - Even under entrepreneur control, cannot commit not to extract fraction of payoff. E.g. If VC can steal idea with probability $1 - \lambda \rightarrow$ same split as under joint control
 - Equity-type contract: joint control regardless of state of the world

- In both cases, e_i extracts all ex ante rents from f_i
Financing Choice When Rival Chooses VC Financing
Bank Financing - Second Period

- Following success for venture i at date 1:
 - venture i: $\pi_i \left(q^h, q^l, t \right) - c$
 - venture j: $\pi_j \left(q^l, q^h, t \right)$

- Following failure for venture i at date 1:
 - venture i: $\pi_i \left(0, q^l, t \right)$
 - venture j: $\pi_j \left(q^l, 0, t \right)$

- Surplus from short-term success for ventures i and j:

 \[s_{ibv} = \left(\pi_i \left(q^h, q^l, t \right) - c \right) - \pi_i \left(0, q^l, t \right) \]

 \[s_{jvb} = \pi_j \left(q^l, 0, t \right) - \pi_j \left(q^l, q^h, t \right) \]
Bank Financing - First Period

- Maximization program for e_i:

$$\max_{P_{ibv}} X_{ibv} \left[P_{ibv} + \left(\pi_i \left(q^h, q^l, t \right) - c \right) \right] + [1 - X_{ibv}] \pi_i \left(0, q^l, t \right)$$

$$\max_{P_{ibv}} X_{ibv} [P_{ibv} + \left(\pi_i \left(q^h, q^l, t \right) - c \right) - \pi_i \left(0, q^l, t \right)] + \pi_i \left(0, q^l, t \right)$$

s_{ibv}

M_{ibv}
Bank Financing - First Period

- Maximization program for e_i:

$$
\max_{P_{ibv}} X_{ibv} \left[P_{ibv} + \left(\pi_i \left(q^h, q^l, t \right) - c \right) \right] + \left[1 - X_{ibv} \right] \pi_i \left(0, q^l, t \right)
$$

$$
\max_{P_{ibv}} X_{ibv} \left[P_{ibv} + \left(\pi_i \left(q^h, q^l, t \right) - c \right) - \pi_i \left(0, q^l, t \right) \right] + \pi_i \left(0, q^l, t \right)
$$

- Minimum expected return: $M_{ibv} = \pi_i \left(0, q^l, t \right)$
Bank Financing - First Period

- Maximization program for e_i:

$$\max_{P_{ibv}} X_{ibv} \left[P_{ibv} + \left(\pi_i \left(q^h, q^l, t \right) - c \right) \right] + \left[1 - X_{ibv} \right] \pi_i \left(0, q^l, t \right)$$

$$\max_{P_{ibv}} X_{ibv} \left[P_{ibv} + \left(\pi_i \left(q^h, q^l, t \right) - c \right) \right] - \pi_i \left(0, q^l, t \right) + \pi_i \left(0, q^l, t \right)$$

- Minimum expected return: $M_{ibv} = \pi_i \left(0, q^l, t \right)$

- Expected bonus from short term success:

$$B_{ibv} = X_{ibv} \left[P_{ibv} + s_{ibv} \right]$$
Bank Financing - First Period

- Maximization program for e_i:

$$\begin{align*}
\max_{P_{ibv}} & \quad X_{ibv} \left[P_{ibv} + \left(\pi_i \left(q^h, q^l, t \right) - c \right) \right] + [1 - X_{ibv}] \pi_i \left(0, q^l, t \right) \\
\max_{P_{ibv}} & \quad X_{ibv} \left[P_{ibv} + \left(\pi_i \left(q^h, q^l, t \right) - c \right) - \pi_i \left(0, q^l, t \right) \right] + \pi_i \left(0, q^l, t \right) \\
& \quad \text{subject to} \\
& \quad s_{ibv} + M_{ibv} \\
& \quad \text{Minimum expected return: } M_{ibv} = \pi_i \left(0, q^l, t \right) \\
& \quad \text{Expected bonus from short term success:} \\
& \quad B_{ibv} = X_{ibv} \left[P_{ibv} + s_{ibv} \right] = \left[\frac{1}{2} + \frac{s_{ibv} - s_{jvb}}{6t} \right] \left[t + \frac{s_{ibv} - s_{jvb}}{3} \right] \\
& \quad \text{First period price: } P_{ibv} = t - \left(2s_{ibv} + s_{jvb} \right) / 3
\end{align*}$$
Bank Financing - First Period (2)

- Maximization program for e_j:

$$
\begin{align*}
\max_{P_{jvb}} & \quad X_{jvb} \left[P_{jvb} + \pi_j \left(q^l, 0, t \right) \right] + \left[1 - X_{jvb} \right] \pi_j \left(q^l, q^h, t \right) \\
\max_{P_{jvb}} & \quad X_{jvb} \left[P_{jvb} + \pi_j \left(q^l, 0, t \right) - \pi_j \left(q^l, q^h, t \right) \right] + \pi_j \left(q^l, q^h, t \right) \\
\end{align*}
$$

- Minimum expected return: $M_{jvb} = \pi_j \left(q^l, q^h, t \right)$
- Expected bonus from short term success:

$$
B_{jvb} = X_{jvb} \left[P_{jvb} + s_{jvb} \right] = \left[\frac{1}{2} + \frac{s_{jvb} - s_{ibv}}{6t} \right] \left[t + \frac{s_{jvb} - s_{ibv}}{3} \right]
$$

- First period price: $P_{jvb} = t - \left(2s_{jvb} + s_{ibv} \right) / 3$
VC Financing

• Second period expected payoffs of ventures i and j:
 \[\pi_i(q^l, q^l, t) = \pi_j(q^l, q^l, t) \]
VC Financing

- Second period expected payoffs of ventures i and j:
 $\pi_i (q^l, q^l, t) = \pi_j (q^l, q^l, t)$

- First period maximization for e_i: $\max_{P_{ivv}} \left(X_{ivv}P_{ivv} + \pi_i (q^l, q^l, t) \right)$

First period prices:

$P_{ivv} = P_{jvv} = t$
VC Financing

- Second period expected payoffs of ventures i and j:
 $$\pi_i (q^l, q^l, t) = \pi_j (q^l, q^l, t)$$

- First period maximization for e_i:
 $$\max_{P_{ivv}} \left(\chi_{ivv} P_{ivv} + \pi_i (q^l, q^l, t) \right)$$

 \[B_{ivv} \]

 \[M_{ivv} \]

- Minimum expected return:
 $$M_{ivv} = \pi_i (q^l, q^l, t) = \pi_j (q^l, q^l, t) = M_{jvv}$$
VC Financing

- Second period expected payoffs of ventures i and j:
 \[\pi_i(q', q', t) = \pi_j(q', q', t) \]

- First period maximization for e_i:
 \[
 \max_{P_{ivv}} \left(\underbrace{X_{ivv}P_{ivv} + \pi_i(q', q', t)}_{B_{ivv}} \right)
 \]

 \[
 M_{ivv} = \pi_i(q', q', t) = \pi_j(q', q', t) = M_{jvv}
 \]

 \[
 B_{ivv} = X_{ivv}P_{ivv} = t/2 = X_{jvv}P_{jvv} = B_{jvv}
 \]
VC Financing

- Second period expected payoffs of ventures i and j:
 $$\pi_i \left(q^l, q^l, t \right) = \pi_j \left(q^l, q^l, t \right)$$

- First period maximization for e_i:
 $$\max_{P_{ivv}} \left\{ X_{ivv} P_{ivv} + \pi_i \left(q^l, q^l, t \right) \right\}$$
 $$\min_{M_{ivv}} \left\{ \pi_i \left(q^l, q^l, t \right) \right\}$$

 - Minimum expected return:
 $$M_{ivv} = \pi_i \left(q^l, q^l, t \right) = \pi_j \left(q^l, q^l, t \right) = M_{jvv}$$
 - Expected bonus from short term success:
 $$B_{ivv} = X_{ivv} P_{ivv} = t/2 = X_{jvv} P_{jvv} = B_{jvv}$$

 - First period prices:
 $$P_{ivv} = P_{jvv} = t$$
Financing Tradeoff

- Entrepreneur e_i chooses bank financing over VC financing if and only if:

\[
\begin{align*}
\text{Bonus Differential} & \quad \left[B_{ibv} (s_{ibv} (t), t) - B_{ivv} (t) \right] - \\
& > 0 \text{ iff } z(t) = s_{ibv}(t) - s_{jvb}(t) > 0 \\
\text{Minimum Return Differential} & \quad \left[M_{ivv} (t) - M_{ibv} (t) \right] - \\
& = \pi_i (q^l, q^l, t) - \pi_i (0, q^l, t) > 0
\end{align*}
\]
Financing Tradeoff

- Entrepreneur e_i chooses bank financing over VC financing if and only if:

 \[
 \frac{B_{ibv}(s_{ibv}(t) - s_{jvb}(t), t) - B_{ivv}(t)}{M_{ivv}(t) - M_{ibv}(t)} > 0 \quad \text{iff} \quad z(t) = s_{ibv}(t) - s_{jvb}(t) > 0
 \]

- Three possible cases:
Financing Tradeoff

- Entrepreneur e_i chooses bank financing over VC financing if and only if:

\[
\begin{align*}
\text{Bonus Differential} & \quad [B_{ibv}(s_{ibv}(t) - s_{jvb}(t), t) - B_{ivv}(t)] - \\
\text{Minimum Return Differential} & \quad [M_{ivv}(t) - M_{ibv}(t)]
\end{align*}
\]

\[
> 0 \iff z(t) = s_{ibv}(t) - s_{jvb}(t) > 0
\]

- Three possible cases:
 - If $B_{ibv} - B_{ivv} \geq M_{ivv} - M_{ibv} > 0$: bank financing is optimal
Financing Tradeoff

- Entrepreneur e_i chooses bank financing over VC financing if and only if:

$$\left[B_{ibv}(s_{ibv}(t) - s_{jvb}(t), t) - B_{ivv}(t)\right] - \left[M_{ivv}(t) - M_{ibv}(t)\right] > 0$$

iff $z(t) = s_{ibv}(t) - s_{jvb}(t) > 0$

- Three possible cases:
 - If $B_{ibv} - B_{ivv} \geq M_{ivv} - M_{ibv} > 0$: bank financing is optimal
 - If $M_{ivv} - M_{ibv} > B_{ibv} - B_{ivv} \geq 0$: VC financing is optimal
Financing Tradeoff

- Entrepreneur e_i chooses bank financing over VC financing if and only if:

 $B_{ibv}(s_{ibv}(t) - s_{jvb}(t), t) - B_{ivv}(t) - [M_{ivv}(t) - M_{ibv}(t)] > 0$ if $z(t) = s_{ibv}(t) - s_{jvb}(t) > 0$

 $= \pi_i(q^l, q^l, t) - \pi_i(0, q^l, t) > 0$

- Three possible cases:

 - If $B_{ibv} - B_{ivv} \geq M_{ivv} - M_{ibv} > 0$: bank financing is optimal
 - If $M_{ivv} - M_{ibv} > B_{ibv} - B_{ivv} \geq 0$: VC financing is optimal
 - If $B_{ibv} - B_{ivv} < 0$: VC financing is optimal (no benefit from bank financing)
Financing choice and competitive behavior

- First period prices: lower under bank financing
Financing choice and competitive behavior

- First period prices: lower under bank financing
 - Venture j: predation $\Rightarrow P_{jvb} < P_{jvv}$
Financing choice and competitive behavior

- First period prices: lower under bank financing
 - Venture j: predation $\Rightarrow P_{jvb} < P_{jvv}$
 - Venture i: prevention $\Rightarrow P_{ibv} < P_{ivv}$
Financing choice and competitive behavior

- First period prices: lower under bank financing
 - Venture j: predation $\Rightarrow P_{jvb} < P_{jvv}$
 - Venture i: prevention $\Rightarrow P_{ibv} < P_{ivv}$
- Probability of short-term success: X_{ibv} need not be lower than X_{ivv} (could be higher)
Financing choice and competitive behavior

- First period prices: lower under bank financing
 - Venture j: predation $\Rightarrow P_{jvb} < P_{jvv}$
 - Venture i: prevention $\Rightarrow P_{ibv} < P_{ivv}$

- Probability of short-term success: X_{ibv} need not be lower than X_{ivv} (could be higher)

- Second period prices: conditional on short-term success for venture i, higher under bank financing than under VC financing
Recall the expression for venture i’s second period expected profits:

$$\pi_i(q_i, q_j, t) = \left[\frac{1}{2} + \frac{(q_i - q_j)}{6t} \right] \left[t + \frac{(q_i - q_j)}{3} \right]$$

$$\leftrightarrow \pi_i(\Delta_i, t) = x_i(\Delta_i, t) p_i(\Delta_i, t) \quad \text{with} \quad \Delta_i = q_i - q_j$$
Recall the expression for venture i’s second period expected profits:

$$\pi_i (q_i, q_j, t) = \left[\frac{1}{2} + \frac{(q_i - q_j)}{6t} \right] \left[t + \frac{(q_i - q_j)}{3} \right]$$

$$\Leftrightarrow \pi_i (\Delta_i, t) = x_i (\Delta_i, t) p_i (\Delta_i, t) \quad \text{with} \quad \Delta_i = q_i - q_j$$

Impact of competition:

$$\frac{d\pi_i}{dt} = \frac{dx_i}{dt} p_i + \frac{dp_i}{dt} x_i$$

business stealing rent reduction
Recall the expression for venture i’s second period expected profits:

$$\pi_i (q_i, q_j, t) = \left[\frac{1}{2} + \frac{(q_i - q_j)}{6t} \right] \left[t + \frac{(q_i - q_j)}{3} \right]$$

$$\Leftrightarrow \pi_i (\Delta_i, t) = x_i (\Delta_i, t) p_i (\Delta_i, t) \quad \text{with} \quad \Delta_i = q_i - q_j$$

Impact of competition:

$$\frac{d \pi_i}{dt} = \frac{dx_i}{dt} p_i + \frac{dp_i}{dt} x_i$$

- business stealing: $(dx_i / dt) [p_i - mc_i] < 0$ if and only if $\Delta_i > 0$
Recall the expression for venture \(i \)'s second period expected profits:

\[
\pi_i (q_i, q_j, t) = \left[\frac{1}{2} + \frac{(q_i - q_j)}{6t} \right] \left[t + \frac{(q_i - q_j)}{3} \right]
\]

\(\Leftrightarrow \pi_i (\Delta_i, t) = x_i (\Delta_i, t) p_i (\Delta_i, t) \) with \(\Delta_i = q_i - q_j \)

Impact of competition:

\[
\frac{d\pi_i}{dt} = \frac{dx_i}{dt} p_i + \frac{dp_i}{dt} x_i
\]

- business stealing: \((dx_i / dt) [p_i - mc_i] < 0\) if and only if \(\Delta_i > 0 \)
- rent reduction: \((d [p_i - mc_i] / dt) x_i > 0\)
Competition and Financing Choice - Preliminary Note (2)

• Now consider difference b/w two expected profits, with $\Delta_i = q_i - q_j$, $\Delta'_i = q'_i - q'_j$, and $\Delta_i > \Delta'_i$:

$$\pi_i (\Delta_i, t) - \pi'_i (\Delta'_i, t) = x_i (\Delta_i, t) p_i (\Delta_i, t) - x'_i (\Delta'_i, t) p'_i (\Delta'_i, t).$$
• Now consider difference b/w two expected profits, with \(\Delta_i = q_i - q_j, \Delta'_i = q'_i - q'_j, \) and \(\Delta_i > \Delta'_i: \)

\[
\pi_i (\Delta_i, t) - \pi'_i (\Delta'_i, t) = x_i (\Delta_i, t) p_i (\Delta_i, t) - x'_i (\Delta'_i, t) p'_i (\Delta'_i, t).
\]

• Impact of competition

\[
\frac{d (\pi_i - \pi'_i)}{dt} = \left[\frac{dx_i}{dt} p_i - \frac{dx'_i}{dt} p'_i \right] + \left[\frac{dp_i}{dt} x_i - \frac{dp'_i}{dt} x'_i \right]
\]

\(\text{Differential BS}<0 \)
\(\text{Differential RR}>0 \)
Competition and Financing Choice - Preliminary Note (2)

- Now consider difference between two expected profits, with $\Delta_i = q_i - q_j$, $\Delta'_i = q'_i - q'_j$, and $\Delta_i > \Delta'_i$:

 $$\pi_i (\Delta_i, t) - \pi'_i (\Delta'_i, t) = x_i (\Delta_i, t) p_i (\Delta_i, t) - x'_i (\Delta'_i, t) p'_i (\Delta'_i, t).$$

- Impact of competition

 $$\frac{d (\pi_i - \pi'_i)}{dt} = \left[\frac{dx_i}{dt} p_i - \frac{dx'_i}{dt} p'_i \right] + \left[\frac{dp_i}{dt} x_i - \frac{dp'_i}{dt} x'_i \right]$$

 - Differential BS < 0
 - Differential RR > 0

- Key point: $(\Delta_i + \Delta'_i) / 2$ increases DBS but not DRR
Now consider difference b/w two expected profits, with \(\Delta_i = q_i - q_j, \Delta'_i = q'_i - q'_j \), and \(\Delta_i > \Delta'_i \):

\[
\pi_i (\Delta_i, t) - \pi'_i (\Delta'_i, t) = x_i (\Delta_i, t) p_i (\Delta_i, t) - x'_i (\Delta'_i, t) p'_i (\Delta'_i, t).
\]

Impact of competition

\[
\frac{d}{dt} (\pi_i - \pi'_i) = \left[\frac{dx_i}{dt} p_i - \frac{dx'_i}{dt} p'_i \right] + \left[\frac{dp_i}{dt} x_i - \frac{dp'_i}{dt} x'_i \right]
\]

\[
= \begin{cases}
\text{Differential BS}<0 & \text{Differential RR}>0
\end{cases}
\]

Key point: \((\Delta_i + \Delta'_i) / 2 \) increases DBS but not DRR

\((\Delta_i + \Delta'_i) / 2 = \left(mc_j + mc'_j \right) / 2 - \left(mc_i + mc'_i \right) / 2 = \text{venture i’ competitive advantage} \)
Now consider difference b/w two expected profits, with \(\Delta_i = q_i - q_j \), \(\Delta'_i = q'_i - q'_j \), and \(\Delta_i > \Delta'_i \):

\[
\pi_i(\Delta_i, t) - \pi'_i(\Delta'_i, t) = x_i(\Delta_i, t) p_i(\Delta_i, t) - x'_i(\Delta'_i, t) p'_i(\Delta'_i, t)
\]

Impact of competition

\[
\frac{d}{dt} \left(\pi_i - \pi'_i \right) = \left[\frac{dx_i}{dt} p_i - \frac{dx'_i}{dt} p'_i \right] + \left[\frac{dp_i}{dt} x_i - \frac{dp'_i}{dt} x'_i \right]
\]

Differential BS < 0

Differential RR > 0

Key point: \((\Delta_i + \Delta'_i) / 2 \) increases DBS but not DRR

\((\Delta_i + \Delta'_i) / 2 = \left(mc_j + mc'_j \right) / 2 - \left(mc_i + mc'_i \right) / 2 = \text{venture i' competitive advantage} \)

DBS dominates DRR iff \((\Delta_i + \Delta'_i) / 2 > 0 \)
Impact of Competition on Financing - Minimum Return Differential

- Tradeoff: \[B_{ibv}(z(t), t) - B_{ivv}(t) - [M_{ivv}(t) - M_{ibv}(t)] \]
Impact of Competition on Financing - Minimum Return Differential

- Tradeoff: \([B_{ibv}(z(t), t) - B_{ivv}(t)] - [M_{ivv}(t) - M_{ibv}(t)]\)

- Competition and minimum return differential: \(M_{ivv}(t) - M_{ibv}(t)\)
Impact of Competition on Financing - Minimum Return Differential

- Tradeoff: \([B_{ibv}(z(t), t) - B_{ivv}(t)] - [M_{ivv}(t) - M_{ibv}(t)]\)
- Competition and minimum return differential: \(M_{ivv}(t) - M_{ibv}(t)\)
 - \(\frac{\Delta_i + \Delta_i'}{2} < 0 \Rightarrow \frac{d(M_{ivv}(t) - M_{ibv}(t))}{t} > 0\)
Impact of Competition on Financing - Minimum Return Differential

- Tradeoff: \([B_{ibv}(z(t), t) - B_{ivv}(t)] - [M_{ivv}(t) - M_{ibv}(t)] \)
- Competition and minimum return differential:
 \(M_{ivv}(t) - M_{ibv}(t) \)
 \[\frac{\Delta_i + \Delta'_i}{2} < 0 \Rightarrow \frac{d(M_{ivv}(t) - M_{ibv}(t))}{t} > 0 \]
- \(\Rightarrow \) Competition reduces the cost of bank financing, \(M_{ivv}(t) - M_{ibv}(t) \)
Impact of Competition on Financing - Bonus Differential

- Bonus differential, $B_{ibv}(z(t), t) - B_{ivv}(t)$, is isomorphic to profit differential
Impact of Competition on Financing - Bonus Differential

- Bonus differential, $B_{ibv}(z(t), t) - B_{ivv}(t)$, is isomorphic to profit differential

$$
\frac{d(B_{ibv}(z(t), t) - B_{ivv}(t))}{dt} = \frac{\partial (B_{ibv}(z(t), t) - B_{ivv}(t))}{\partial t} + \frac{\partial B_{ibv}(z(t), t)}{\partial z} \frac{\partial z}{\partial t}
$$

Competition increases the (potential) benefit from bank financing, $B_{ibv}(z(t), t)$.
Impact of Competition on Financing - Bonus Differential

- Bonus differential, $B_{ibv}(z(t), t) - B_{ivv}(t)$, is isomorphic to profit differential

$$\frac{d(B_{ibv}(z(t), t) - B_{ivv}(t))}{dt} = \frac{\partial(B_{ibv}(z(t), t) - B_{ivv}(t))}{\partial t} + \frac{\partial B_{ibv}(z(t), t)}{\partial z} \frac{\partial z}{\partial t}$$

- $\partial (B_{ibv}(z(t), t) - B_{ivv}(t)) / \partial t < 0$
Impact of Competition on Financing - Bonus Differential

- Bonus differential, $B_{ibv}(z(t), t) - B_{ivv}(t)$, is isomorphic to profit differential

\[
\frac{d(B_{ibv}(z(t), t) - B_{ivv}(t))}{dt} = \frac{\partial (B_{ibv}(z(t), t) - B_{ivv}(t))}{\partial t} + \frac{\partial B_{ibv}(z(t), t)}{\partial z} \frac{\partial z}{\partial t}
\]

- $\frac{\partial (B_{ibv}(z(t), t) - B_{ivv}(t))}{\partial t} < 0$

- If $z(t) > 0$, venture i has surplus adv. \Rightarrow DBS > DRR
Impact of Competition on Financing - Bonus Differential

- Bonus differential, $B_{ibv}(z(t), t) - B_{ivv}(t)$, is isomorphic to profit differential
 \[
 \frac{d(B_{ibv}(z(t), t) - B_{ivv}(t))}{dt} = \frac{\partial(B_{ibv}(z(t), t) - B_{ivv}(t))}{\partial t} + \frac{\partial B_{ibv}(z(t), t)}{\partial z} \frac{\partial z}{\partial t}
 \]
- $\partial (B_{ibv}(z(t), t) - B_{ivv}(t)) / \partial t < 0$
 - If $z(t) > 0$, venture i has surplus adv. \Rightarrow DBS $>$ DRR
 - If $z(t) < 0$, venture i has surplus disadv. \Rightarrow DRR $>$ DBS.

But bonus diff. is < 0
Impact of Competition on Financing - Bonus Differential

- **Bonus differential**, $B_{ibv}(z(t), t) - B_{ivv}(t)$, is isomorphic to profit differential

\[
\frac{d(B_{ibv}(z(t), t) - B_{ivv}(t))}{dt} = \frac{\partial(B_{ibv}(z(t), t) - B_{ivv}(t))}{\partial t} + \frac{\partial B_{ibv}(z(t), t)}{\partial z} \frac{\partial z}{\partial t}
\]

- \(\partial (B_{ibv}(z(t), t) - B_{ivv}(t)) / \partial t < 0 \)
 - If \(z(t) > 0 \), venture \(i \) has surplus adv. \(\Rightarrow \) DBS > DRR
 - If \(z(t) < 0 \), venture \(i \) has surplus disadv. \(\Rightarrow \) DRR > DBS.
 But bonus diff. is \(< 0 \)

- \(\partial z(t) / \partial t = \partial (s_{ibv}(t) - s_{jvb}(t)) / \partial t < 0 \)
Impact of Competition on Financing - Bonus Differential

- Bonus differential, $B_{ibv}(z(t), t) - B_{ivv}(t)$, is isomorphic to profit differential
 \[
 \frac{d(B_{ibv}(z(t), t) - B_{ivv}(t))}{dt} = \frac{\partial (B_{ibv}(z(t), t) - B_{ivv}(t))}{\partial t} + \frac{\partial B_{ibv}(z(t), t)}{\partial z} \frac{\partial z}{\partial t}
 \]
 - $\partial (B_{ibv}(z(t), t) - B_{ivv}(t)) / \partial t < 0$
 - If $z(t) > 0$, venture i has surplus adv. \Rightarrow DBS > DRR
 - If $z(t) < 0$, venture i has surplus disadv. \Rightarrow DRR > DBS.
 But bonus diff. is < 0
 - $\partial z(t) / \partial t = \partial (s_{ibv}(t) - s_{jvb}(t)) / \partial t < 0$
 - Because
 $\partial s_{ibv}(t) / \partial t = \partial \left[(\pi_i(q^h, q^l, t) - c) - \pi_i(0, q^l, t) \right] / \partial t < 0$
 and $\partial s_{jvb}(t) / \partial t = \partial \left[\pi_j(q^l, 0, t) - \pi_j(q^l, q^h, t) \right] / \partial t > 0$
Impact of Competition on Financing - Bonus Differential

- Bonus differential, $B_{ibv}(z(t), t) - B_{ivv}(t)$, is isomorphic to profit differential

 $$\frac{d(B_{ibv}(z(t), t) - B_{ivv}(t))}{dt} = \frac{\partial(B_{ibv}(z(t), t) - B_{ivv}(t))}{\partial t} + \frac{\partial B_{ibv}(z(t), t)}{\partial z} \frac{\partial z}{\partial t}$$

- $\partial (B_{ibv}(z(t), t) - B_{ivv}(t)) / \partial t < 0$
 - If $z(t) > 0$, venture i has surplus adv. \Rightarrow DBS $>$ DRR
 - If $z(t) < 0$, venture i has surplus disadv. \Rightarrow DRR $>$ DBS.
 But bonus diff. is < 0

- $\partial z(t) / \partial t = \partial (s_{ibv}(t) - s_{jvb}(t)) / \partial t < 0$
 - Because
 $$\partial s_{ibv}(t) / \partial t = \partial \left[(\pi_i(q^h, q^l, t) - c) - \pi_i(0, q^l, t) \right] / \partial t < 0$$
 and $\partial s_{jvb}(t) / \partial t = \partial \left[\pi_j(q^l, 0, t) - \pi_j(q^l, q^h, t) \right] / \partial t > 0$

- $\frac{\partial B_{ibv}(z(t), t)}{\partial z} > 0$
Impact of Competition on Financing - Bonus Differential

- Bonus differential, $B_{ibv}(z(t), t) - B_{ivv}(t)$, is isomorphic to profit differential

 $$\frac{d(B_{ibv}(z(t), t) - B_{ivv}(t))}{dt} = \frac{\partial(B_{ibv}(z(t), t) - B_{ivv}(t))}{\partial t} + \frac{\partial B_{ibv}(z(t), t)}{\partial z} \frac{\partial z}{\partial t}$$

- $\frac{\partial (B_{ibv}(z(t), t) - B_{ivv}(t))}{\partial t} < 0$
 - If $z(t) > 0$, venture i has surplus adv. \Rightarrow DBS > DRR
 - If $z(t) < 0$, venture i has surplus disadv. \Rightarrow DRR > DBS.
 But bonus diff. is < 0

- $\frac{\partial z(t)}{\partial t} = \frac{\partial (s_{ibv}(t) - s_{jvb}(t))}{\partial t} < 0$
 - Because
 $$\frac{\partial s_{ibv}(t)}{\partial t} = \frac{\partial [\pi_i(q^h, q^l, t) - c] - \pi_i(0, q^l, t)]}{\partial t} < 0$$
 and $$\frac{\partial s_{jvb}(t)}{\partial t} = \frac{\partial [\pi_j(q^l, 0, t) - \pi_j(q^l, q^h, t)]}{\partial t} > 0$$

- $\frac{\partial B_{ibv}(z(t), t)}{\partial z} > 0$

- Competition increases the (potential) benefit from bank financing, $B_{ibv}(z(t), t) - B_{ivv}(t)$
Impact of Competition on Financing Choice

- There exists a threshold t^{**} such that bank financing is optimal when $t \leq t^{**}$, and VC financing is optimal otherwise.
Industry Equilibrium
Financing Choice When Rival Chooses Bank Financing

- Entrepreneur e_i chooses bank financing over VC financing iff:

 $$[B_{ibb}(t) - B_{ivb}(z(t), t)] - [M_{ivb}(t) - M_{ibb}(t)] \geq 0$$
Financing Choice When Rival Chooses Bank Financing

- Entrepreneur \(e_i \) chooses bank financing over VC financing iff:
 \[
 [B_{ibb}(t) - B_{ivb}(z(t), t)] - [M_{ivb}(t) - M_{ibb}(t)] \geq 0
 \]

- There exists a threshold \(t^{***} > t^{**} \) such that bank financing is optimal when \(t \leq t^{***} \), and VC financing is optimal otherwise.
Industry Equilibrium

- Equilibrium financing choices evolve with the degree of product market competition
Industry Equilibrium

- Equilibrium financing choices evolve with the degree of product market competition
- At low levels of competition \((t \geq t^{***})\), both entrepreneurs choose VC financing
Industry Equilibrium

- Equilibrium financing choices evolve with the degree of product market competition
- At low levels of competition \((t \geq t^{***})\), both entrepreneurs choose VC financing
- At moderate levels of competition \((t^{**} \leq t \leq t^{***})\), both entrepreneurs choose VC, or both choose bank
Equilibrium financing choices evolve with the degree of product market competition

- At low levels of competition \((t \geq t^{***})\), both entrepreneurs choose VC financing
- At moderate levels of competition \((t^{**} \leq t \leq t^{***})\), both entrepreneurs choose VC, or both choose bank
- At high levels of competition \((t \leq t^{**})\), both entrepreneurs choose bank financing.
Discussion/Conclusion
Three Empirical Implications

- **Prediction 1**: Product market competition should increase probability of bank financing over VC financing
Three Empirical Implications

• Prediction 1: *Product market competition should increase probability of bank financing over VC financing*

Three Empirical Implications

• **Prediction 1**: *Product market competition should increase probability of bank financing over VC financing*

• **Prediction 2**: *Bank (debt) financing should lead to lower prices in the short-term, but higher prices in the medium-term, conditional on not defaulting*
 - Chevalier (1995): Supermarket LBOs
 - Phillips (1995): Gypsum, fiberglass insulation, tractor trailers, polyethylene chemicals
 - Zingales (1997): Trucking

• **Prediction 3**: *Debt-financed firms are more likely to exit following bad short-term performance, but are not necessarily more likely to perform poorly in the first place*
 - Phillips (1995)
Three Empirical Implications

- **Prediction 1**: Product market competition should increase probability of bank financing over VC financing

- **Prediction 2**: Bank (debt) financing should lead to lower prices in the short-term, but higher prices in the medium-term, conditional on not defaulting
 - Chevalier (1995): Supermarket LBOs

- **Prediction 3**: Debt-financed firms are more likely to exit following bad short-term performance, but are not necessarily more likely to perform poorly in the first place
 - Phillips (1995)
Three Empirical Implications

• Prediction 1: *Product market competition should increase probability of bank financing over VC financing*

• Prediction 2: *Bank (debt) financing should lead to lower prices in the short-term, but higher prices in the medium-term, conditional on not defaulting*

 • Chevalier (1995): Supermarket LBOs
 • Phillips (1995): Gypsum, fiberglass insulation, tractor trailers, polyethylene chemicals
Three Empirical Implications

• **Prediction 1:** Product market competition should increase probability of bank financing over VC financing

• **Prediction 2:** Bank (debt) financing should lead to lower prices in the short-term, but higher prices in the medium-term, conditional on not defaulting
 - Chevalier (1995): Supermarket LBOs
 - Phillips (1995): Gypsum, fiberglass insulation, tractor trailers, polyethylene chemicals
 - Zingales (1997): Trucking
Three Empirical Implications

- **Prediction 1:** Product market competition should increase probability of bank financing over VC financing

- **Prediction 2:** Bank (debt) financing should lead to lower prices in the short-term, but higher prices in the medium-term, conditional on not defaulting
 - Chevalier (1995): Supermarket LBOs
 - Phillips (1995): Gypsum, fiberglass insulation, tractor trailers, polyethylene chemicals
 - Zingales (1997): Trucking

- **Prediction 3:** Debt-financed firms are more likely to exit following bad short-term performance, but are not necessarily more likely to perform poorly in the first place
Three Empirical Implications

- **Prediction 1**: Product market competition should increase probability of bank financing over VC financing

- **Prediction 2**: Bank (debt) financing should lead to lower prices in the short-term, but higher prices in the medium-term, conditional on not defaulting
 - Chevalier (1995): Supermarket LBOs
 - Phillips (1995): Gypsum, fiberglass insulation, tractor trailers, polyethylene chemicals
 - Zingales (1997): Trucking

- **Prediction 3**: Debt-financed firms are more likely to exit following bad short-term performance, but are not necessarily more likely to perform poorly in the first place
Three Empirical Implications

• **Prediction 1:** Product market competition should increase probability of bank financing over VC financing

• **Prediction 2:** Bank (debt) financing should lead to lower prices in the short-term, but higher prices in the medium-term, conditional on not defaulting
 - Chevalier (1995): Supermarket LBOs
 - Phillips (1995): Gypsum, fiberglass insulation, tractor trailers, polyethylene chemicals
 - Zingales (1997): Trucking

• **Prediction 3:** Debt-financed firms are more likely to exit following bad short-term performance, but are not necessarily more likely to perform poorly in the first place
 - Phillips (1995)
Conclusion

• Duopoly model of entrepreneurial finance
Conclusion

- Duopoly model of entrepreneurial finance
- Examines the bi-directionality of relation between financing and competition: Financing choice affects competitive behavior of rivals, but is itself affected by the degree of competition
Conclusion

- Duopoly model of entrepreneurial finance
- Examines the bi-directionality of relation between financing and competition: Financing choice affects competitive behavior of rivals, but is itself affected by the degree of competition
- Extensions/caveats:
Conclusion

- Duopoly model of entrepreneurial finance
- Examines the bi-directionality of relation between financing and competition: Financing choice affects competitive behavior of rivals, but is itself affected by the degree of competition
- Extensions/caveats:
 - Richer model, more empirical predictions?
Conclusion

- Duopoly model of entrepreneurial finance
- Examines the bi-directionality of relation between financing and competition: Financing choice affects competitive behavior of rivals, but is itself affected by the degree of competition
- Extensions/caveats:
 - Richer model, more empirical predictions?
 - Ex ante efficiency and competition
Conclusion

- Duopoly model of entrepreneurial finance
- Examines the bi-directionality of relation between financing and competition: Financing choice affects competitive behavior of rivals, but is itself affected by the degree of competition
- Extensions/caveats:
 - Richer model, more empirical predictions?
 - Ex ante efficiency and competition
 - Empirical work on competition and entrepreneurial finance
Conclusion

- Duopoly model of entrepreneurial finance
- Examines the bi-directionality of relation between financing and competition: Financing choice affects competitive behavior of rivals, but is itself affected by the degree of competition
- Extensions/caveats:
 - Richer model, more empirical predictions?
 - Ex ante efficiency and competition
 - Empirical work on competition and entrepreneurial finance
 - Hotelling specification and robustness